Methodology to analyse small silicon samples by glow discharge mass spectrometry using a thin wafer mask

نویسندگان

  • C. Modanese
  • L. Arnberg
  • M. Di Sabatino
چکیده

Glow discharge mass spectrometry (GDMS) is widely used for trace element analysis of bulk solid samples. The geometry of the GD source limits the minimum size of the sample, which for the instrument used in this work (ThermoElementGD) is 20 mm in diameter. From time to time, there is the need to analyse smaller samples with this technique, and we present here a methodology to analyse samples of 9-20 mm diameter through the use of thin masks. Thin masks have been previously used mostly as secondary cathode for the analysis of non-conducting materials, with hole size smaller than the area of the glow discharge. The use of masks in this work includes the following customization:•The choice of highly-pure Si as mask material, to decrease the chance of interferences with the Si samples.•The use of a hole in the mask of the same size as the discharge area. This implies that the mask material is not sputtered, thus decreasing chances for contamination from the mask itself.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VERY DEEP TRENCHES IN SILICON WAFER USING DRIE METHOD WITH ALUMINUM MASK

Abstract: In this paper, a DRIE process for fabricating MEMS silicon trenches with a depth of more than 250 m is described. The DRIE was produced in oxygen-added sulfur hexafluoride (SF6) plasma, with sample cooling to cryogenic temperature using a Plasmalab System 100 ICP 180 at different RF powers. A series of experiments were performed to determine the etch rate and selectivity of the some m...

متن کامل

Characterization of Doped Amorphous Silicon Thin Films through the Investigation of Dopant Elements by Glow Discharge Spectrometry. A Correlation of Conductivity and Bandgap Energy Measurements

The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as wel...

متن کامل

Investigation on the erosion/deposition processes in the ITER- like Wall divertor at JET using Glow Discharge Optical Emission Spectrometry technique

As a complementary method to RBS, GDOES (Glow Discharge Optical Emission Spectrometry) was used to investigate the depth profiles of W, Mo, Be, O and C concentrations into marker coatings (CFC/Mo/W/Mo/W) and the substrate of divertor tiles up to a depth of about 100 m. A number of 10 samples cored from particular areas of the divertor tiles were analyzed. The results presented in this paper ar...

متن کامل

Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens.

A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime of the discharge, where the cross section for electron attachment increases. The formation of negative ion...

متن کامل

Effect of the nanoparticles on the structure and crystallization of amorphous silicon thin films produced by rf glow discharge

Thin films of nanostructured silicon (ns-Si : H) were deposited by plasma-enhanced chemical vapor deposition in the presence of silicon nanoparticles at 100 ±C substrate temperature using a silane and hydrogen gas mixture under continuous wave (cw) plasma conditions. The nanostructure of the films has been demonstrated by diverse ways: transmission electron microscopy, Raman spectroscopy, and x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015